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SUMMARY /57 YL

A technique for deternining the time-varying dynamic response charac-
teristics of human pilots in tracking taslis is presented. The technique
is based on a model adjustment or mimiclkdng procedure in which a nodel
composed of filters whose impulse responses are orthogonalized exponential
functions is used. The fllters are conrnected in parallel and their out-
puts are weighted and added together. The weights are determined so that
the mean-square difference between the output of the model and the out-
put of the pilot 1s minirmum. Time-varying characteristics are measured
by determining successively the model weights from short samples of the
input and output signals of the human operator.

The model weights are partial regression coefficients o the pilot's
output on each of the filter outputs used in the model. By rmaking use of
xnown statistlcal properties of regression coefficients, distribution
functions for the model weights are derived for the case in which the
residual error, the part of the pilot's output that cannot be accounted
for by the model, has a normal distribution. Relations for estimating
the length of sample of input and output signals required to determine the
welignts with given confidence limits are derived.

The measurement technique has been implemented on a high speed digital
computer, Results obtained by applying the technique to measurement of a
variety of digital filters, analog filters and human operator dynamic
response characteristics are presented. It 1s shown that a model composed
of five properly chosen fiiters can approximate a large variety of systems
with an error of about one percent or less.



I. INTRODUCTION

The icca of representing human operator dyaemle response characier-
istics by linear transfer functions so as to permit the application of the
theory of linear servomechanisms to manual control problems originated
during World War II in the work of A. Sobeczyk, R. S. Phillips, and H. K. Weiss
(refs. 1-3) and of Tustin (refs. 4-6). Tustin introduced the concept of
determining (from measurements a human operator input and output) a lincar
operator to describe the human's dynamic characteristics and recognized
the existence of a remnant, the portion of the human operator's resnonsc
behavior that could not be attributed to this linear operation on the input.
These early studies have served as the basis for much of rescarch in human
operator dynamic response characteristies that has been performed in the
last fifteen years (see refs. 7 and 8 for a summary of this research).

An Important aspect of research in human operator dynamics has bteen
the development of techniques for determing human operator characteristics,
that 1s, his transfer function. As might be expected from the fact that
the human is an adaptive, time-varying, nonlinear controller whosc charac-
teristics depend upon the forcing function input te the control systom and
upon the characteristics of the controlled element, measurcement of human
operator dynamic characteristics presents some special problems. Frequent-
ly, it 1is not possible to remove him from the control system, to alter his
connections with the rest of the system, or to apply special test signals
as Inputs without causing significant changes 1in his dynamic response be-
havior. Under these circumstances, 1t 1s necessary either to mcasure his
characteristics in situ, that is, 1n the actual operational situation, or
in a simulated situation in which the characteristics of those elements
and signals which are important determinants of human operator behavior
are faithfully reproduced (refs. 7-11).

Most measurements of human operator dynamic characteristics have been
made using one of three techniques: Fourier analysis, correlation techniques,
or model adjustment techniques. Tustin (ref. §), Russell (ref. 10), and
Sheridan (ref. 12), used input signals composed of a small number of sinu-
soids and performed a Fourler analysis of pilot output at each of the
frequencies used in the input signal. Cross-correlation and cross-power
density spectra techniques (refs. 13-15) have been used by Elkind (refs. 9,



16), Krendel (ref. 7) and Hall (ref. 11). lModel adjustment techniques
have been cmployed by a group at Goodycar Aircraft (ref. 17), Ornstein
(ref 18), and Goodman and Reswiclc (ref. 19).

In the Fourier analysis technique an input forcing function comnoscd
of the sum of a small number of sinusolids is used. The corrclation of the
ruman operator's output with cach of %he sinusoids used in the input and by
these sinusoids shifted in phase Dby 90 degrecs 1is computed. The correl-
ations obtained are the cocfficients of the sine and cosine scries repre-
sentation of the part of the onerator's response that is linearly reclated
to the input. By normalizing these corrclations with respect to the ampli-
tudes of the input sinusoids, values of the human operator's transfer
function are obtained at the frequencles contained in the input.

The corrclation technique rests upon the fact that the cross-corrcla-
tion function of input forcing function and human operator rcsponsc b
equal to the convolution of the input autocorrelation function and the
impulse response of the linear opcrator that provides the lcast mean-square
error approximation to the human operator's responic. If the input is
gausslan, the human opcrator's transfer function can be obtaincd by simply
Fourier :transforming the correlation functlons. [Irom the autocorrclation
function of the human operator's response and its Fourier transform, the
povwer spectrum of human operator's remnant can be determined. A modifil-
cation of the correlation technique isvto compute (1) the cross-power
density spectrum between the input signal and the operator's response,
(2) the power spectrum of the input and (3) the power spectrum of the
response directly from the time functions of these signals without first
computing the correlation functions. Human operator transfer function
and the power spectrum of the remnant are determined directly from these
power and cross-power density spectra.

In the third analysis method, the model adjustment technique, a model
for the human operator 1s constructed and fed the same 1nput as the operator.
The parameters of the model are adjusted until a good match between model
output and human operator output 1s achlieved. A number of different model



matching technlques have been used. In the study conducted at Goodycar
Alrcraft (ref. 17), a model incorporating some simple nonlinearities was
constructed on an analog computer. The parameters of the model, coeffli-
clents of' the diffcrential cquation and of the nonlinearities that were
simulated, were adjusted to obtain a good visual match to human opecrator's
response. Ornstein (ref. 18) used an analog computer to simulate a

linear model for the human operator. He automatically adjusted the
parameters of the model (coefficients of a differential equation) to achieve
the least mean-square error approximation to human operator characteristics.
Goodman and Reswick (ref. 19) used what was essentially a tapped delay line
(a delay-line synthesizer) to simulate the human operator's impulsc response.
The autocorrelation function of input signal to the operator (not the input
forecing function to the system) was fed to the delay line. The outputs of
the taps were weighted and then added together. The weights were adjusted
to give a good visual fit to the cross-corrclation function between input
and response.

Each of these techniques has certain advantages and disadvantages.
The Fouriler analysis method is very simple and inexpensive to instrument
and lends itself to real-time analysis of operator charactecristics. The
real ancd imaginary parts of the operator's transfer function can be com-
puted as the tracking run is performed. However, the method cannot be
used for determining the power spectrum of the remnant. Also, it is
necessary to excite the system being studied artificlally by a signal
composed of sinusoids and therefore human operator characteristics can-
not be measured using the signals naturally present in the system. Finally,
samples of the system input and operator response signals must be several
times longer than the period of the sinusoid at which measurements are
belng made or the sample length must be carefully adjusted to be an in-
tegral multiple of the periods of all the input sinusoids if accurate
measurements are to be made. Sheridan (ref. 12) found that 1t was neces-
sary to use samples 15 seconds long in order to obtain reasonably accurate
transfer function measurements.

The correlation and spectral techniques have the advantage that the .
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power spectrum of the operator's remnant can be computed. However,

the method is more complicated than the Tourier analysis technigue and 15
not easily adapted to real-time, on-line data analysis. Artificiel input

signals must be used or 1t must be possible to isclate the input signal to
the system. Thc sample length required to obtain accurate measurenents
depends upon the bandwldth of the filters used to find thc power spectra.
Typically, 25 to 30 second-long samples are necessary if reasonable resolu-
tion in frequency is to be achleved.

The model adjustment techniques permit mecasurement with the signals
that normally circulate 1n the control loop and artificial inputs are not
required. The princlpal advantage of the Goodyear and Ornstein techniques,
which are based on simulation of a differcntial equation, is that they
yield directly in closed form an analytic expression for the transfer
function approximation to the human operator characteristics. However,
the coefficlents of this approximation, the coefficicnts of the diffler-
ential equation, have to be determined by "eut-and-try" or "hill-climbing"
procedures. There does not scem to be an analytic proccdure for finding
the coefficients. The technique also requires an assumption of the form
of pilot transfer function. Since there may be a strong interaction among
the coefficients being adjusted (the value of one coefficient influences
the values of the others), inaccurate rcsults may be obtained 1f thic
operator's actual characteristics arc not of the assumed form. The
remnant waveform can be determined by exciting the model with the input
to the human operator and subtracting the model output from his output.
The model adjustment technique of Goodman and Reswick does not requirc an
assumption of the form of the human's characteristics. An analytic pro-
cedure for determining the weights that should be applied to the outputs
of %the tapped delay line exlsts (sce ref. 20), although Goodman and
Reswick used a "cut-and-try" procedure in their original worlk.

By taking advantage of some of the recent work on system analysis and
signal representation, it seems possible to achleve considerable improve-
ment in the accuracy of measurement of human operator characteristics and
in the sample length requlred to obtain the estimates of his character-
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istics. Levin, in his work on system analysis (ref. 20), points out that
the model adjustment technique provides estimates of systom character-
istics that are optimum in the scnse that they have minirum variance.
Therefore, these estimates can be obtained with specified variance from
shorter sample lengths than with less efficient techniques. His approach
to the measurement problem is an application of the multiple regression
analysis (refs. 21 and 22), and, as such, is an outgrowtn of or is closcly
related to the work of Levinson (ref. 23), Goodman and Reswick {ref. 19),
Lee (ref. 10), Gabor (ref. 24), and Knowles et. al. (ref. 25). Huggins
in his work on signal representation (ref. 26) demonstrates the efficicney
of representing a signal by orthonormal functions that resemble the signal
to be represceated. In particular, he shows that a particular class of
rthogonalized exponential functions (ref. 27) are especially well suited
for representling the lmpulse responsc of many physical systems. The tech-
nigues discussed in this report are a synthesis of the modcl adjustment
(multiple regression) approach to measurcment discussed by Levin and others
and employs the orthogonal functions used by Huggins.

Thls research was supported by the National Aeronautics and Space
Administration under contract NASw-185.

LIST CF SYMBOLS

a Constant added to mimic to account for non-zero
mean of y(t)

bj Mimic coeffilcient
b Vector of mimic coefficients
j Coefficlent of series representation of auto-
correlation function Rxx(t’)
Cil’ C12 Constants used to orthogonalize exponential functions
ei(t) Input forcing function signal
F(s) Transfer function of test filter
gJ The Jth element of g
g Second term of Eq. (3.15)

h Digital sampling interval
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H(s)

o =

o

K+1

3

m(t-t')

M(Jw)
n(t)

n

N
Rxx(t')
S

Sn

51,82,...,SK

The Jth element of h
Third term of Eq. (3.15)
Human operator transfer function

Number of filters in mimic

Error reductlon factor
Covariance matrix with elements zin

Covariance matrix of z; and 24 for 1 < K and
J>2K+1

Sample mean of zj(t)

Sample mean of y(t)

Weighting function of mimic

Number of degrees of freedom of zju in time T
Transfer function of mimilc

Noise signal represcnting pilot's remnant

Vector of covariances of zi(t) and n(t)

Number of independent samples of residual in time T
Autocorrelation of x(t)

Complex frequency variable (o + Jw)

Pole of system to bc measured

Poles of mimic filters
Sample variance of residual

Sample variance of part of output of jth mimic filter
that 1s uncorrelated with the other filter outputs

Sample varlance of pilot output
Power density spectrum of x(t)
Power density spectrum of y(t)
Power density spectrum of €(t)
Time

Length of sample of signals used to compute mimic
coefficients

Coefficients of series expansion of system welghting
function



Vector of coefficlents wj for j =K
Vector of weiphts wJ for j > K+ 1
Weighting function of time-invariant linear system

Weighting function of timc-variant linear filter

Equivalent square bandwldth in eps of residual
Equivalent square bandwidth of zju(t)

Transfer function corresponding to w(t)

Pilot visual input signal

Pllot response signal

Vector of covariances of zi(t) and y(t)

Mimie output

Output signal of jthmimic filter
Integral-square error

Mean-square difference

Expected value of bj

Vector of BJ
Deviation of delay compensation from test filter delay
Residual error signal

Expected value of gJ

Vector of Tj

2
Ju
Expected variance of bJ averaged over sjﬁ

Condition variance of bj for a given s

Variance of n(t)

Variance of x(t)

Varlance of residual

Mean of y(%) -
Mean of zj(t)

th

Impulse response of j mimic filter

Transfer function of jth mimie filter



II. THE MEASUREMENT PROBLEM

In Fig. 2.1 is 2 simplificd block diagram of a Tlight control system.
The pllot responds tc the visual input signal, x(t), by executing move-
ments, y(t), of the control. We are interested in the dynamic relation-
ship between pilot response y(t) and pilot input x(t). Usually the input
x(t) is random or at least partly random. This is true even when the input
forcing function is a fixed reference command, since, to a large extent,
the signal x(t) is composed of perturbations of clectrical, mechanical or

aerodynamic origin that circulate within the control loop.

Although the human pilot's characteristics are time-varying and non-
linear, we can always represcnt the relation between his Input anc alis
output in any control situation by the model of Fig. 2.2: a comblnation
of a quasi-lincar time-invariant or time-variant weighting functlon and
a noise generator (refs. 7 and 9). The weighting function accounts for
that portion of pilot output that is lincarly correlated with the input.

The noise pgenerator accounts for that part not lincarly corrclated with

the input, the remnant. For contrcl situvations in which the cystem dynamics
or input forcing function do not change with time a time-Invariant welghting
function will frequently account for almost all of the pilot's response and
the remnant will be small. When the system or input change with tinme, a
time-variant weighting function 1s likely to be required to obtain a good
representation for pilot behavior.

The weighting function is called quasi-linear because 1t approximates
the relation between pilot input and output for only a single control
situation. If the control situation changes (and sometimes even if it
does not), a different weighting functlion will be required. The measure-
ment problem is to determine the weighting function whose response to the
pilot's input x(t) provides the best match to the pilot's output y(t). For
the purposes of this report, we wlll consider the best match to be the one
that causes the mean-square difference (MSD) between pilot output and
weighting function response to be minimum. In addition to finding the
weighting function, we want to determine the remnant n(t). These are two
elements of the model of Fig. 2.2.
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SYSTEM NPOT HUMAN :'elé%Nse
INPUT INPUT

DISPLAY |———9
x(t) |PiLoT y(t)

N
SYSTEM
DYNAMICS e,(t)

SENSORS |«

Figure 2.1.~ Simplified block disgram of flight control system.

TIME -INVARIANT .
LINEAR FILTER, W(t-t)

() TIME -VARIANT

n(t)

LINEAR FILTER, w(t,t-1")

Figure 2.2.~ Representations for human pilot

H—2Ls

- linear time-

invariant or linear time-variant filter with output

disturbed by noise, n(t).
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The analysis technlgues discussed in this report can be uscd 1o
determine both time-invariant and time-variani weighting represcniavions

for nhuman pillots in operational and simulated flight control situations.
The techniques have obvious application to other problems of analysis of

dynamic systems. We leave it to the reader to evaluate the applicability
of the methods presented to other types of measurement problems.
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IXI, DETERMINATION OF TIME-INVARIANT CHARACTERISTICS
A. VWEIGHTING FUNCTION

First, consider the problem of determining a time-invariant weight-
ing function for pillot characteristics. For the model of Fig., 2.2, the

relation between pilot input and output can be written in terms of the
convolution integral

y(£) = /% w(t-t1) x (£') a6 + n(t) (3.1)
o
where x(t) 1s the input to the pilot; y(t) is the output including the
remnant noise n(t); and w(t-t') is the time-invariant weighting function
that provides the least mean-square error approximation to pilot charac-
teristics. The welghting function is to be determlined from measurements
made on x(t) and y(t).

The weighting function w(t-t') is a representation of pilot charac-
teristics in the time domain. We are not limited to a time domaln reprec-
sentation, but could choose to represent pilot characteristics in some
other domain, such as the frequency domain, In that case, the pilot's
characteristics would be expressed in terms of a transfer function. In
general, we can define a set of orthonormal functions ¢i(t) such that

1l for i =
Jo ¢3(t) ¢.(t) at'= (3.2)
O for 1 # 3
1f these functions are complete we can approximate the pilot'!s weighting
function with vanishingly small mean-square error by an 1infinite number
of such functions. If this 1s done the system weighting function can be
wrltten

-]

w(t) = jil W ¢J(t) (3.3)

and the system output becomes

y(t) = 5 [, ? ¢J(t-t') x (') dt'] + n(t) (3.4)
J=1 o)



13

or

v(t)

[
™8
+—

Wy zj(t) + n(t) (3.5)

where zj(t) is the jth integral in summcilon of Eg. (3.4). If the system
weighting function 1s lmowvm, the coefficicnts wJ can be found by mulvl-
plying both sides of Eq. (3.3) by ¢j(t) and integrating over time. Because
the ¢3(t) are orthogonal,

W
(o))
S’

Wy o= Jo wie) o;(t) at (

Eguations (3.4) and (3.5) suggest & nethod for measurement in which
a set of filters whose welghting functions arc equal to the ¢, {t) of

J
Eq. (3.3) are connected in parallel as shown in Fig. 3.1. The input to
the pilot, x(t) is fed to the filters. The filter outputs ( ) are multi-
plied or weighted by the coefficlents b. and then summed to lO m z{(L). We

J
call this parallel connection of filters a "minic" and z(t) the output oI
the mimic. For practical reasons, only a finite number of f{ilterc, say K,
can be used in the mimic and the nimic output 1is

X
z(t) = jil b zj(t) (3.7)

The measurement problem now becomes one of finding the mimic cocflfi-
cients that give the least necan-sguarc difference (1iSD) betwecen minlc out-
put and pilot output. It is also interesting to determine the relation
betrecn the mimle coefficientc, bj, and the cocfficilents of the secries
representatlion for the weighting function of Eg. (3.3), w,;. ‘o assume for
simplicity that the mean values of :2(%) and n(t) are zero. Therefore, the
mean values of y(t) and of all the filter outputs will be zero. The
coefficients b, are determined so that thc'Ezj the MSD between system out-
pus y(t) and mimic output z(t), is a minimum.

The 1NSD is determined by averaging the square of the difference
vetween y(t) and z(t) over a period of T seconds' duration.
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The difference or error 1s

=

e(t) = y(£) - z(t) = y(t) - Z by zy(t)

3=

Its mean-square 1is {3.6)
K

= {y(t) - = b
J=1

éT e(t)2¢ = €2 2. (6)]2

1
T Jd J

where the bar indicates that the average with respect to time is to be
taken. The values of the coefficients b, that minimize the M3D can be
found by taking the derivative of 2 in Eq. (3.8) with respect to each bj
and setting the results equal to zero. Doing this, a set of K equations
are obtailned.

zlzl b1 + 2122 b2 +...zlzK bK = zy¥
z22l b1 + 2222 b2 +"°222K bK = 22y
: : (3.9)
2y 24 bl + ZgZ, b2 Foe 2z bK = Zyy
where zizj is the sample covarilance of zy and z, for the period T and z23¥
J
is the sample covariance of zg and y for the same period.

Note that since it was asswrned that the expected values of input x(t)
and noise n(t) were zero, the expected value of Zys zJ and y(t) will be zcro.
If the expected values of x(t) and n(t) were not zero, or were unknown, an-
other equation would be required in the set of Eq. (3.9) and a constant would
have to be added to the output of the mimic. The additional equation would

be
K

a=my - T by (3.10)
J-—
where m, is the sample mean of y(t) and m, is the sample mean of zj(t).
The covariances in Eq. (3.9) would have to be taken about these mean values
and would be of the form

(z; - mJ{z; - ;) (3.11)
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In the remainder of this report we asscume that x(t) and n(t) have
zero mean. Tne results obtained can be cxtended to the case in wiilch the

means are not zcro by substituting cxpressions like the one in Eq. (3.11)
for the covariances 1n Eq. (3.9).

In matrix notation Eq. (3.9) is written
Lb=y (3.12)

where L is the K by K covariance matrix with the elcments'EEEE; b is the L b
column matrix of coefficients bj5 and ¥y is the column matrix with elcments
E;?. IC. the mimic fillters are choscn well, the weighting function of the
mimic will be very nearly equal to that of the system, and

K
w(t) ~ =

A b ¢J(t) (3.13)

Since the mimic filters have known characteristics, the system weighting
function can be determined, at least approximately, from Eq. (3.13) once
the mimic coefficlents have becn computed. However, the b, in Zq. (3.13)
willl not necessarily be equal to the wj in Eq. (3.3). The bj's are the
coefficlents of a finlte series approximation to the pilot and are, In
addition, subject to random variations resulting from the noisc n(t),
whereas the wj's are the coefficients of an infinite serles approximation
to the pillot's actual weighting function.

The values of the mimlc coefficlents that will be obtained in an
actual measurement can be found by using Eq. (3.5) to expand y on the
rignht side of Eq. (3.12). Vhen this 1s done, the following matrix equation
is obtained:

L b=L w + Lgg ¥y 4 n (3.14)

where w 1s the column matrix whose elements are the first K coefficients
w, of Eq. (3.3); Wi is the column matrix whose elements are the coelfi-
clents w, for J > K + 1; £K+l is the matrix of sample covariances zizj for
i <Kand J 2K+ 1; nis the column matrix whose elements are the sample
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covariances of filter output zi(t) for i < K and noise n(t)

The solution to Eq. (3.14) is:

_ --1 , -1 1
D=3+ L7 Lyyy ¥gey T L n (3.15)

or
b=u+g+h (3.16)

where g and h are column matrices whose elements g, and h, are determined
by the second and third terms on the right side of Eq. (3.15).

Thus, each mimic coefficient bj 15 the sum of three components: the
corresponding weight w of the expansion of system welghting function in
cerms of an infinite sum of orthonormal functions, Eq. (3.3); a bias gj

caused by approximating the system with a finite number of mimic filters;
and a nolse term hj. Since the noise is uncorrelated with the input or with
any of the mimic filter outputs, the expected value of h will be zero and

B = ¥ + X (3.17)

where £ 1s a column matrix whose elements BJ are the expected values of
the mimic coefficients and yj are the expected values of gj.

Tor the special cases in which the input is white gaussian noise or an
impulse, the expected covariance of one filter output with all other filter
outputs will be zero (the filters have impulse responscs that are orthogonal),
and the expected value of Ly ., will be zero. In this case y will be zero,
ﬁj will equal wj, and there will be no bias.

If the system can be represented exactly by a mimic composed of K
filters, w, for J > K + 1 will be zero, and therefore y will be zero. The
mimic coefficilents will be unblased and Bj'will equal wj. This will be
true for all input slgnals.
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B. DETERMINATION OF CORRELATION FUNCTIONS AND POWER SPECTRA

An autccorrclation or a cross-corrclation funciion of Lwo signals

can be approximated by a linear combination of filter impulse rescponse
functions in much the same way as was the quasi-linear impulse response

of the pilot (ref. 28). That is, the autocorrelatlion of the input signal
x(t),

I ™M=

Rxx(t') ~

; ¢y ¢J(t') for t' > 0

1 (3.18)
where the ¢J(t') are the impulse responses of the mimic filters and the

¢y are the weights appliecd to each ¢j(t').

If the ¢j(t') form a complete set of functions, the corrclotion
function Rxx(t') can be approximated with vanishingly small mean-sguarc
error 1f K in Eq. (3.18) is allowed to go to infinity. Ue will acowunsc
that the ¢j(t‘) arc complete and orthonormal in the following discussion.

An expression for the c¢.'s can be obitained by multiplying both sides
of Eq. (3.18) vy ¢j(t') and integrating the product over all valucs of &!

rom zero to infinity. Because the functions arc orthonormal, the cnly

.th £

term of the summation that does not integrate to zero is the I ern and

¢, = f: Ree(t1) @, (61) ag (3.19)

Equation (3.19) can be used to determine the weights of Eq. (3.18)
1f the autocorrelation function is lmown. Equation (3.18) can be used to
compute the correlation function if the weights are known.

If the correlation function is not lmown, the weights can. be conputced
directly from the signal x(t) by using a method developed by Lampard
(ref. 29). A set of mimic filters are excited by the signal x(t), and the
filter outputs are multiplied by x(t). The average valucs of the result-
ing products are the desired weights. The output of the 1th filter is

z,(t1) = f: x(t-t1) ¢, (t') at: (3.20)
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By multiplyirg both sides by x(t) and averaging, we obtain
m
A 0T x(e) z,(t) at = e [% fT x(t) =(t-t+) at] ¢i(t‘) dt! (3.21)
Y e 1 o o

The average value of x(t) x(t-t'), the seccond integral, is the auto-
correlation function Ryx(t') and

X = & fi x(t) z,(¢) et = [" R (e') o, (c') at' (3.22)

The integral on the right is identical with that in Eq. (3.19) and, thus,
— _1 /T
¢, =Xz, = fo x(t) zi(t) dt (3.23)

Once the welghts c. are determined, Eq. (3.18) can be uscd to conmpute
the autocorrelation function sz(t')‘ Since the power density spectrum of
x(t), Sxy(jw),is the Fourier transform of the autocorrelation function
Rxx(t') (ref. 14),

-
1

[Nl

Sxx(jw) ~

J

¢y ®J(jw) (3.24)

where oj(jw) is the Fourier transform of ¢j(t').

Cross-corrclation functions ol two signals can also be obtained using
this method. Onec of the signals 1s uscd as the input to the mlmic filter
and the other is used as the multiplier of filter outputs.

C. DETERMINATION OF RENMNANT

In generél, the mimle will not account for all of the output of the
system. The part not accounted for, thc residual €(t), is the differcnce
between the system output y(t) and the mimic output z(t). The residual
has two components: one results from the pilot's remnant n(t) and the other
from imperfect approximation of the pilot's weighting function, w(t-t').

If the pilot's welghting function is approximated with very little error,
the residual will be almost entirely composed of the pilot's remnant.
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£ we carry out the squaring opcration indicated In Eq. (3.8) and
note that
K

1 by 5%y = 321 0y 25V (3.25)

K
z b
=1 J 1

(LI el

we obtain for the following expression for the mean-square or varliance

of the residual

)
N
(@)Y

~

where s. 2 is the variance of y(%t), i.c., v(t) Equation (3.25) can be
used to determine the mean-squarc crror ol approximation to pilot charac-
teristics, see, once the mimic coefficicnts and covarianccs'zzi nave been
computed. If the mimic is a good approximation te pilot weighting function,

most of the residual will result from pilot remnant n(t).

The power spectrum of the rcsidual can be computcd in two ways. If
the mimic transfer function is li(jw) and the input and output power spectra,
S:y(jw) and Syy(jw), have been determined, the residual spectrum can be

v

determined from the relation

- . .. 2 .
Secldw) = 5 (50) - | m(ye) | %8, (0)  (3.27)
The cecond term on the right is the power spectrum of the output of tre
mimic. The difference obctween 1t and the power spectirum of the pilot's

output is the power spectrun ol the rcsidual.

Wnen Eq. (3.27) is used to determine the residual spectrum, errors
in approximating Sxx and Syy wlll rcsult in errors in S .. A more
accurate method for determining the residual spectrum is actually ©o
obtain the residual signal €(t) as showm in Fig. 3.1. Oncc the minic
coefficients have been determined, the input signal x(%) can be fed to
tne mimic a second time, and the mimic output z(t) obtained. By subtract-
ing z(t) from pilot output y(t), the residual signal €(t) is found. The
power spectrum Sc.(J;w) 1s computed from €(t) using the method discussed
in the previous section. Since €(t) consists largecly of components of
pllot's recsponse that are not linearly correclated with pllot input,
analysis of this signal may be useful for identiflcation of nonlinear-

ities in pilot characteristics.
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IV, STATISTICAL PROPZRTIES OP MIMIC COEFFICIENTS

A

i

. DISTRIBUTION OF MIMIC COEFFICIZKTS

The mimic coefficlients are partial regression coefficients or pilot
output y(t) on ecach of the filter outpuis zj(t). It is showa ina siandard
statistical texts (refs. 21 and 22) that if the residual €(t) is normally
distributed, the mimic coefficients b. will be normally distributcd. The
expected value of bj is given by Eg. (3.17). The variance of b, ic

v

Z (4.1)

winere G€2 is the expected value of the variance of the residual crior;

N 1s the number of independent samples of the residual used in the coiouta-
ticn of bj‘ Note that N must be grocter than K for Eg (4.1) to malic sonce,
since at least K samples are ncedecd to solve uniquely the K simultancovs

s . 2 . . I
equations required to determine the L. Sju 1s the sample variancc of the
\ th ..., v ; . .
part of the cutput of the | fllter, that is uncorrelated with the other
. ; " .th . . .
K-1 filter outputs and is equal to the Jt term on the diagonal of thne

. . =1
inverse of the covariance matrix, L ™.

The variance of b, depends upon the value of the variance 5, obiained
J o

J
in a particular measurcment of b.. The mean of b. 1s indepcndent ol :ju
J v

and 1s equal to Bj' For each vaiue of S?u’ bJ has a diffecrcnt nornol
cdistribution. Therefore, the probability density of bj is conditional

on s?u and is dcnoted2p[bjls?u]. p[bjlsgu] is the conditional probabllity
denséty of bj given Sju'2 Similarly, the variance of bj is conditional

en Sju’ and 1s denoted Objls' Using this notation, Eq. (4.1) may bc written

2
02 = i 4
vils =52 (4.2)
The expected variance of b’j can be obtained by averaging 0bj|s in
Eg. (4.2) over all values of s?u. Thus, bJ 1s distrivuted with mean BJ
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and variance 0;3 glven by

2 o _E_ o __ 2 2
08y =~ 15 5 pisfy) drsfy)
Jju
or (4.3)
2
g
2 € 2
o} = —— E[1l/S
bj . [/ Jh]

where E[l/s?u] is the expected valuc of l/s?u and p[s?u] is the probability

2

density of Sju

Denote the part of the output of the jth filter that is uncorrclated
with the other mimiec filter outputs by zju(t) and its variance by Oiu

(t) is the part of zj(t) that remains after the best lincar combination
of the other K-1 filter outputs is subtracted from z. (t) Assume that
during the T-second long sample uscd O compute s? , there are M independent
samples of z (t) If the system input is normally distributed wlth mean
zero, the filter outputs will be normally distributed with mean zero and

the quantity

%U. ~ X2 (4.4)

will have approximately a x2 distribution with [M-(K+1)] degrecs ol
freedom. K-1 degrees of frecdom are lost in the computation of the part
of z,(t) that is uncorrclated with vne other filter outputs. Equation
(4.3; can be rewritten in terms of x by using Eq. (4.4).

2 oM . 1 o 2
Ops ~ S J -5 plx"] alx®) (4.5)
J T NeS, %x
Ju

Carrying out the integration indicated in Eq. (4.5), we obtain

2
M
_0'2 <

by Ty o?u[m-(x+1)]

c

for ¥ > K+ 1 (4.6)
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Eguation (4.6) is not a good approximation to ogj when M is nearly cqual
to or less than K+1. TFor M 1s this range the X assumption is not accuratc.

Equation (4.1) gives the variance of the minic cocfficient when a
particular value of sju is obiained in a measurcment. Thc nminic coeffi-
cients will be normally distributed with this variance if the residual e(t).
is normal. The pilot's input and output need not be normal for the mimic
coefficients to be normal. Howcver, in Eq. (4.6) cgj, the variance averaged
over all values of S?u’ was derived under assumptlon that the input and ouc-
put were normal. In the event the residual is not normal, the rcesulis
obtaincd in this sectlion will not be strictly correct. IL the deviation

rom normality is not too great, thesc results should still providac good

estimate of the statistical properties of the mimic cocificient.
B. CCNFIDENCE LIMITS FOR MIMIC COEFFICIENTS

The results above can be used (1) to place confidence limits on [,
the expected value of the mimlc coclficicnts, once the sample nmimic cocllin
cients b. have bcen obtained or (2) to test the significance of dirrfcrences
between two valucs of bj' lie consicer two measurcment situations: those In
which o, the standard deviation of the residual error, is lkmown and thicse
in which o, nust be estimatcd. The usual assumptions of normality of

system and mimic outputs arc rade.

If o, is imown, the variance of any measured value of bj can be com-
puted from Eq. (4.2). The conditional variance ng]s is used rather than
tge expected variance Ugj of Eg. (4.6), since in any mecasurcment or bj’
Sju 1s specified and can be determined from the covariance matrix L.

Eq. (4.2) requires lnowledge of N, the number of degrees of freedom of the
residual €(t). The "sampling thecorem" can be used to obtain a rough
estimate of N (ref. 30). If €(t) is limited to a bandwldth V. cycles per
second, 2V independent samples per second are required to specily e(t),
and 2W.T degrees of freedom are obtained in T seconds. If, as is usually

the case, €(t) 1s not limited to a bandwidth W, cycles per second, the
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sampling theorem 1s not strictly applicable. Nonetheless, it is ztill
uselful for obtaining an estimate of N. To obtain such an estinate, the
equlvalent square bandwidth of €(%t) is used for Ye in the exprocsion for
degrees of freedom. The equivalent square bandwidth of a low-pass signal

is the bandwidth of a signal whose spectrum is rectangular with a magnitude
equal to the peak of the spectrum of the original signal and with a band-
width such that the energies of the two signals are the same. If the Spec-
trum of €(%) cuts off sharply, the equivalent square bandwidth appreximation
will be reasonably good. If 1t falls off gradually, the equivaleni square
bandwidth estimate will be in error, but still close enough to be useful.
For example, for white noise filtcred by a single low-pass RC filtcr, the
estimate that N = 2W_T is low by a factor of approximately+/2 (ref. 31).
Estimates of M in Eq. (4.6) can be obtained using thcse same approximations.

Once cbjls and b, are computed, we can determine from tables of the
normal distribution the probability that EJ lies within certain confidence
limits. If two measurements of b, are made from different sawples of the
signals ijls can be used to determine whether or not there is any sig-
nificant difference between the coefficients. .For example, il the expected
values of the mimic coefficient Bj are tne same for the two measurements,
the probability is .95 that

2 2
bJ2 -byy 32 N/%bj|sl * %4 s2 (4.7)

where b 1 and bj2 are the first and second measurements of a coefficicent
and the term on the right 1s the square rcot of the sum of the variances
bJl and bJ2 (ref. 21).

In most measurement situations, 0. 1s not known and the sample standard
deviation s. must be used. It can be computed from Eq. (3.26). 1t can ve
shown that the quantity

S .
t = /N - K-8 (p
S

€

has a Student's distribution with N-K degrees of freedom (ref. 21).
Equation (4.8) involves only quantities that can be measured from samples
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of the input and output signals and does not require knowlcdge of
population characseristics. Drom tables ol the Student's dlctrivution,
cne can determine the probability that ﬁj lies oulscide preccribed
confidence limits.
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V. MEASUREMENT OF LINEAR TIME-VARYING SYSTEMS

A. PEPRESENTATION OF TIME-VARYING SYSTEMS

The regression analysis technicue can be uscd to determine the
characteristics of time-varying systems provided the system to be measured
doecs not change its characteristics too rapldly. The minic coefficients
are permiticd to be functions of time to account for variation in system
characteristics. Time-varying mimic cocfficients are determined “rom
Eq. (3.12), the same equation that is used to find the cocilicients for
tine-invariant linear systems. However, to measure the variations in
System characteristics, the coefficicnts rust be determined from samplcs
of the system and mimic fllter output signals that are short compared to
the length of time required for the System to change its characterictics.
That is, during the T-second long sample used to compute the covariances
of Eq. (3.12) the system must not have changed its characterisiics
significantly. If it has changed characteristics, the mimic will approxi-
mate the average characterilstics of the system over the T-second long
sample period.

The characteristics of a time-varying linear system, like that in
Fig. 2.2, whose output is disturbed by noise can be represented by a tine-
varyling welghting function. The output v(t) of such a system is rclated
to the input x(t) by the convolution integral,

v(t) = [¥ w(t,t-51) x(t') dat' + n(t) (5.1)

The function w(t,t-t!') is the system welghting function at time t and is
the contribution that an impulse occurring at time t' would make to the
output at time t (ref. 32).

We now show that a mimic whose coefficients are functlons of time can
approximate a time-varying system. Let the mimic be composed of filters
whose Impulse responses form a complete orthonormal set. At any time ¢
the welghting function of a time-varying system, w(t,t—t'), can be approxi-
mated with vanishingly small mean-square error by an infinite number of
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these filters. Thus, the system weignting function I1s

w(t, t-t1) = jf;fl wi(t) 8 (t-t)

and the system output is (5.2)

o0

y(t) = 2 wj(t) zj(t) + n(t)
j=1

wnere w,(t) is the weight applicd at time t to the ;¥ ri1ter, In Eq. (5.2),

the time~varying weighting function has becen partitioned into a set of
time-invariant filters and a sct of time-varlant coefficients wJ(t) that
weight the output of these filters.

Equations (5.2) are serics expressions for the system weigntling
funection and system output when an infinite number of orthonormal Tilters
is used to approximate the system. VWhen a finite number of filters is
used in the mimic, the time-varying riimlc coefficients bj(t) will not, 1in
general, equal the wj(t) in Eq. (5.2).

If we assume that the system rcmains invariant during the tinme T
required to measure the mimic coefficients, then the results obtained for
time-invariant systems still apply. In particular, Eqs. (3.15) and (3.16)
apply 1l we replace the time-invariant coefficients by time-varying
ccefficlents,

b(e) = w(t) + L% Ly my,(6) + 270 n

and (5.3)
b(t) = w(t) + g(t) + h

These equations relate the coefficients bj(t) of a finite mimic to
the coefficients wj(t) of an infinlte series approximation to the time-
varyling system.
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B. SAMPLE LENGTH REQUIREMENTS

The crucial factor that determines the usefulness of the mimicking

technique for measurement of time-varying systems is the length of the
sample T that 1s required to obtalin measurements of the mimic coeffi-

cients that have sufficiently small variance. If the coeffliclents can
be determined with small variance from a short sample, the method will
be highly useful. If a long sample 1s required, its usefulness is limited.

To determine how long a sample length T is required, we nust first
decide what confidence limits are desired, that i1s, we nust speclly the
required value of ogj. given a valuc ol cgj the sample length T required
to achieve the desired cgJ
the varilance cgj depends directly upon the ratio M/[M-(X+1)3. IL M 1s

much larger than K + 1, this ratio will be approximately unity and the

can be determined. TFrom Eq. (4.6) we see that

variance can be approximated by the relotion

2 o2

€
o, ~ (5.4)
b 2

N cju

n
4

If we use the sampling theorem to relate N, the nunber of degrees ©
freedom, to T, the sample length, the following relation for T 1s obuained.

T'\.-—————é——T (5-5)
2We cju ij
If M is no% large compared to K + 1, Eq. (4.6) cannot be simplified, and
the following expression for the variance must be used to determine T
(using the sampling theorem).
2
o 2W .,
2 € JuT 6
ch ~ ) : (5- )
2WT o5, [2WJuT—(K+1)]

L (B).

where wju 1s the effective square bandwldth of zJ

The quantitiles Vg, h%u' 0€2 and c?u must elther be known or estimated

to determine T. In some cases, thnse quantities can be computed from



theoretical consideratlons alone. In oiher cases, preliminary measure-
cnese gquancities

ments of system characteristlcs can be made from which t

can be estimated. Since the prescnt objective 1s just to cotimate the
samrple length T required to measure the ‘oj with given confidence linlts
not to perform a statlstical test of the significance ol a particular

anda
it is sufficient to use approximate valuecs for

measurcment of the mimic,
the quantitles upon which T dcpends.
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VI. SELECTION OF ILiIMIC FILTERS

A, GENERAL CONSIDERATIONS

The mimic can be constructed of any of a large number of different
types of fllters including a set of narrow band-pass filters, a set of
time delays (a tapped delay line; or a set of low-pass filters with rcal
poles (simple exponential filters). The only constraint we shall impose
on the cholce of filters is that the fllter impulse responses should be
orthonormal. This restriction is imposed principally to simplify analysis
of mimic capabilities and is not a necessary restriction.

The basic problem in measurcrent of time-varying systems is to odtain
Irom short samples of data mimic coefficients that have small variance.
The varilance of the mimic coelfficients depends: upon the characteristics
ol the filters used in the mimic in a number of ways. By choosing the
filfers properly, the variance can be reduced, or, alternatively, the
sample length required to achieve some specliflic variance can be shortened.

The mimiec filters should be chosen o that the mimic accounts for
almost all of that part of the system output that is linearly corrclaicd
with the input. By doing this, the residual variance os will be rcduced,
thereby reducing 055. The filters also should be selected so that a Tew
Tilters account for almost all of the system output. These new filters
will have coefficients that will be large and the relative variability
of the cocfficicgts, obj/bj, will be small. Finally, since og, depends
inversely upon Uju and directly upon the ratio.M/[M-(K+l)], it 1s desirable
©o choose the filters so that their outputs are as nearly independent as
possible (to make c§u large) and so that I the number of degrees of frccdon
in the uncorrelated part of the filter output, 1s large compared to K + 1
(to make M/[M-(X+1)] approach one). M can be made large by choosing
filters of wide bandwldth whose outputs are uncorrelated. If a small number
of filters is used, K will be small and it will be easler to achnleve a

ratio M/[M-(X+1)] that approaches unity.
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From the point of view of convenience and habit, perhans the most
natural choice of filters for the misic isc a set of narrow vanapacs
filters. The outputs of such a sct of {ilters are approximately orthogonal
for all inputs (provided T is large) and the mimic coefficients are the
real and Iimaglnary parts of the transfer function of the system being
measurcd. DBut, a very large number of narrow band filters is regulred to
represcent typilcal systems with small resicual variance and the number of
degrees of frcedom M of each rilter ocutput will, in general, be small. As
a result, a large Ubj is to be cxpeccted when narrow band filtcrs are uscd.
Ore might thinl that because the outputs of narrow band f{ilters are orth-
ogonal, that the covarilance matrix of Egs. (3.9) and (3.12) would reducc
to a diagonal matrix and solution for the mimic coeflficicnts would be simple.
This advantage 1s not obtained if short samples of signals are uscé o
compute mimic coefficlents. With short samples the off-diagonal tcrms of
the sample covariance matrix will not, in general, be zero, and the full

matrix equatvion must be solved.
B, A CLASS OI" ORTHONORMAL FUNCTIONS

To achleve a good representation with a small number of filters, it
is necessary to choose fllters whose impulse responses resemdle that of
the system being measured. In most control situations, it appears that
the linear part of human pilot characteristics can be approximated by
transfer functions consisting of a delay, one to two lags, and frequently

a lead, i.e.,

+ 5, -Qas
H(s) ~ K * sny) (6.1)
(s + shl)(s + sh2)

The poles and zeroes of approximations to pilot transfer functions are
almost always found to be real or located very close to the real axils.

Thus, a reasonable choice of filters for use in a mimic would be a
set of low-pass fillters with real poles. These filters would have to be
orthogonalized, but that 1s not difficult to accomplish.
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Kautz (ref. 27) and Huggins (ref. 20) discuss a class of orthonorii-
filters that has a number of advantages and that we have found to oc

particularly useful. Sets of orthonormal filters belonging to thic clacs

are constructed from filters whose impulse responses are simple exponen-
-3

tial functions, ¢ 1 , and whose transfier functions are of the fornm

1/(s + s4).
1
The Kautz procedure for orthogonalizing a set of exponentials 1S the

following. If the first orthonormal function 1s a single cxpon ntial (it
could be a sum of exponentials) with a_pole at s = -84, 1t will have the

transfer function
/25,
¢l(s) = "T":— (6.2)

I7 the second orthonormal function, @2(5), is to contain a pole at s = -5,
it can be shown that ¢2(s) will be orthogonal to Ql(s) if it has the

V2, (s - s8) (6

5.3)

transfer function

¢, (s) =
< (s + sl)(s +.s2)

ve can coniinue in this way, making cach function have the poles oJ the
previous function and zerocs that arc the negatives of thecce poles, and
obtain an orthonormal sct composcd of as many functions as we want. The
th

general form for the i1 orthonormal function of thic class 1s:

/255 (s = 5;)(

(s + sl)(s + 52)...(5 + si)

o

- 32)...(5 - ui_l)

[ &}

(G.4)

®i(s) =

C. POLE-ZERO LOCATIONS

We would expect, intuitively, that an orthonormal sct of functions
whose poles were locatced close to the peles of the system being measured
would provide a good approximation to that system, with only a small number
of filters being required. However, in advance of measurement, the
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1ocation ol che poles and zeroes of the system being measured is
only approximately. The problem is Lo selcct the poles and zcroes of the
or=honcrmol set of function so that the error in approximatlon remains small
for the cntire set of likely pole-zero configurations cf the systcm or of

the pillot.

Consider the problem of measuring a system whose transfer function

1s of the form

2811 r -
F(s) = +—+ (G.5)
s + s,
h

where the location of the pole Sh ss not well known. Assume vhat uhwe input
is white noise of unit variance and that a set of orthonormal functions of

the form of Eq. (6.4) is used to measure F(s).

It can be shown that for white noisc inputs the cxpected mean-square
error in approximating the system, the residual variance, 1s

2 _ (1 - sh/sl)z(l - Sh/32)2"’(l - sh/sK)Z (6.6)
€ 2 > - .
(1 + sh/sl) (1 + Sh/SQ) R O Sh/SK)

where —sl,—se,...-sK are the locaticns of the poles of the orthonormal
filters of the mimic (ref. 33). Each filter added to the mimic reduces

[¢)

the error varilance by the factor

(1 -5 /s)®

K. = (6.7)
€ (1 + sh/si)2

In Fig. 6.1 K. is plotted versus sh/si. If any of the poles of the
mimic filters coincide with the pole of the system, 062 goes to zero. To
insure that a certain maximum error is not exceeded when Sy varies over a
wide range (particularly since we actually do not know the locatlon of Si
in advance of measurement), the poles of the mimic filters should be spaccd
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uniformly on a logarithmic scale.* That 1s, the poles should have the
Tollowing values:

(-815-ks8,, -kzsl,...,-kK'lsl)
With this choice of poles, if shis between 51 and Sk Eq. (6.5) wiil
contain at least one term of the form of ig. (6.7), that is, Ko will be
less than

(1 - V/x)° (6.8)

K = —
€max (l+ ﬁ)E

The residual variance 0€2 from the two poles adjacent to Sy, Will be
less than or equal to Kgrﬁx' Since K. is always less than one, the other
filters will reduce the error further. Therefore, Kgmax is the maximum

2

g.” that will occur.

For example, 1f it were desired to achieve a residual error variance
of less than one per cent of the variance of the system output, the poles
of the mimic could be chosen as follows:

(-sl,—4sl,—l6sl,...,—A(K'l)sl)

As lcng as s, was located between s, and sy (where S = M(K'l)sl), the
ratilo sh/si would never be greater than two nor less than one-half. If the
5y, were located at the geometric mean of two analysis filter poles, the
error would be maximum, From Filg. 6.1 we see that for the cases S, = 2si
or 51/2’ if the two poles adjacent to Sy, were the only poles of the mimiec,
the error would be (0.11)2. The next two nearest poles would reduce the
error by a factor of (0.6)2 and the U€2 from the four filters would be less

than 0.5 per cent.

* It should be noted that a set of filters whose poles are spaced uni-
formly on a logarithmic scale is not complete. However, for moct
practical problems, we are more interested in obtaining a good approxi-
mation with a small number of filters than in having the assurance that
we can achleve very small.error with a very large number of filters.
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If the system transfer function is of the form

(s + s, )
23 (6.9)

it can be expanded as a sum of two terms of the form of Eq. (6.5), cach
with a single pole. Figure 6.1 can be used to estimate the residual
error variance in approximating each of these transfer functions separ-
ately. By making appropriate correctilons for the scale factor assoclated
with each component of the transfer functlion, an upper bound to the error
in representing the composite transfer function can be obtained.

The upper bound 1s
g <o, + 0 (6.10)

where 0O, and ¢, are the expected standard deviations of the errors in
2
approximating the first and second components of F(s) of Eq. (6.9).

It is apparent from the preceding analysis that a large class of
systems can be approximated accurately by mimics composcd of a small
rnumber of filters (about 4 or 5), provided some care is exercised iIn
locating the poles and zeroes of these filters. The locations of the
poles and zeroes are not critical and they can be widely spaced. Wide
spacing 1s an advantage, since it allows good approximations for a broad
range of system pole locations. It is also apparent that to obtain as
accurate an approximation to low-pass systems with a mimic composed of
narrow band fllters or time delays would require a much larger filter set
than four or five.

The results presented above are useful in that they provide guides
for selecting mimic filters. In the usual measurement situation, in which
the locations of the poles and zeroes are not known, one cannot use the
relations derived in this section to compute the error in approximation.
Rather, Eq. (3.26), wanich involves only quantities derived from the actual
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system or pilot input and output, should be used to compute the error.
It should be noted, however, that it is not possible, even after a measure-
ment has been made, to determine what part of the residuel error is caused

by imperfect approximation to the system's or pilot's transfer function and
what part is caused by noilse (or remnant) added to the output. One can

only attempt to reduce the size of the part of the resicual caused by im-
perfect approximation to a very small quantity by judicious choilce ot
rmimic fillters. Fortunately, it does not appear to be too difficult to
obtain filters that will provide rather accurate approximations to a wide
variety of systems. A few trials with different filter sets should lead
very raplidly to a satisfactory set.

D. COMPENSATION FOR TIME DELAY

When a small number of orthogonalized exponential filters are uscd
in the mimic, systems that have a time delay termn, e—as’ in their transfler
functions may not be mimicked accurately. If the delay o is not very much
smaller than the time constants of the system, significan{ errors in
approximation will result. These errors can be reduced by using a larger
number of filters in the mimic. A more efficlent procedurc 1s to compen-
sate for the delay by adding a delay to the mimic so that the mimlc filters

do not have to reproduce the delay compenent.

One way of compensating for time delay is to delay the input to the
minle by T seconds and the pilot's output by 7, T - 5, T - 28, T - 36,44,
+ - ng seconds, This procedure, in effect, glves several pilot oufputs
cach advanced with respect to the input by a certain number of seconds, O,
85, 26, 36,...,00. Each of the advanced outputs can be used to compute the
covariances E;?. In this way, several covarlance vectors ¥ Eq. (3.12),
one for each value of delay compensation, are obtained. Eg. (3.12) can pe
solved for each y and a set of mimic coefficlents can be obtained for eac:
delay compensation. The delay compensation that yields the mimic coeffi~
cients that provide the least mean-sguare error approximation to the pilot's
output can be taken to be the approximate delay of the pilot. Thils delay
plus the corresponding mimic coefficients constitute the mimic parameters
+nat best approximate pllot characteristics.
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Delay compensation performed in the manner described does not result
in a great increase in amount of computation. Only one covariance masrix
L (Eq. (3.12)) has to be computed. Once its inverse is determined, it is
relatively easy to solve for the several sets of mimic coefficients

corresponding to the several y.
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VII. EXPERINMENTAL EVALUATION

Programs to perform all the mathematical operations reguired by the
analysis tcchniquc were written for the PDP-1B digital computer (ref. 34).
This 1s a medium size, high speed (5 microsecond memory access time),
storcd program machine. The programs werc used to confirm the thecorctical
developments discusscd in this paper. The programns arc discussed in cetail

ir the Appendix.
A. MEASUREMENTS OF VARIANCE OF MIMIC COEFFICILNTS

A single pole (digitally simulated) test filter of the form 1/(s+sh)
was analyzed using the computer programs. The pole of the test filter wis
located at s = =1.0 (sh = 1). The filter was analyzed by a mimic composed
of five filters of the form of Lg. (6.4). All five poles ol the mimic
filters were located at s = -1.0 (si = 1). Although a single filter of
this kind would match the test filter exactly, a nimic composed of flve
filters was used to simulate more closely the situation likely to be en-

countered in an actual measurement problem.

The input signal x(t) was digitally simulated white noise, a series of
statistically independent pulses with approximately normal amplituce dis-
tribution. A pulse occurred every 0.1 sccond. Impulsive noise of the sahc
type was acdded to the output of the filter. Ixcept for this noise, the
mimic could account for all of the output of the filter, and the variance of
the residual error cee was equal to the variance of the noise ong.

In Pig. 7.1 are shown values of 91 obtained from successive mecasurc-
nents of b1 plotted against the normalized sample length, Tsl, the sample
length times the first mimic filter bandwidth. Between 50 and 150 samples
of bl
when the normalized sample length Tsl was small. Most of the valuctc of ¢

were used to determine 047 the larger number of samples being used
bl
shoun in Fig. 7.1 are for the case in which the ratlo of the standard
deviation of the residual to that of the uncorrelated filter output, Gc/clu’
was equal to 0.41.
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For values of Ts, greater than 10, 91 decreases inversely with VTsq,

This 1is to be cxpected Irom Eq. (5.4) since for a single low-pascs {illter

the equivalent sguare bandwidth of <he nminic {ilter output, wlu, is equal

te 81/4 anu EwJuT in Bq. (5.4) ic ecual to Ts,/2 Tor Ts, muca greater than
10 Thls quantity will be greater than K+1, and from Eg. (5.6).

G, Ce.

g ~ € ~ < -~
bl Y o——— —_— (7.2)
v Glu 2HET Glu

For Tsl less than ten, 91 increasces more ranidly than l/ﬂ/Tsl. Aopar-
ently 2wluT (or Tsl 2) is sufficiently small so that the denominator term
[ijuT-(K+l)] dominates the behavior of Eq. (5.6). However, O,y does not
tend to infinity as T dcercases to very small values as would be predicted
from Zg. (5.6). The rcason probably lies in the inaccuracy of the assunp-
tions that the filtier outpubts have a xg distribution and that the sampling

theorem gives the number of degrees of frcedon.

Also shown for Tsl equal to ten are valucs of 9.1 obtaincd when the

ratclo °€/Glu is iIncreased and decercased Dy a factor of LZwo ol tie valuc

[
o

Eq. (7.1). Values for Oyq approximately twice as large and hall as
as the central value of Oyp Werc obtalncd. This agrees with Zq. (5.6).

%]

B. MNEASUREMENT OF TIME-INVARIANT FILTER

A number of digitally simulated tost filters werc analyzed wiih a soib

of five mimic filters of the form of Eg. (6.4) whose poles were located at

g =-.055, -.167, -0.5, -1.5, -4.5. The impulse responses of tnesc fil%ers
ére in Fig. 7.2. This set of nimic filters was chosen tecause its poles

are logarithmically spaced, they span a wide range, and yet are not too far
apart. The discussion in Section VI indlcates thas such a set of minic
filters should be capable of neasuring a wide range of systems with rclative-

ly small error.

Several input signals were used including an impulse, impulsivc noise,
and Ilmpulsive noise filtered by 1/(s + 5.0). The filtered noisc input is
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Figure T.2.- Impulse responses of the mimie filters used in evaluation of
measurement technique. Poles are at s = -0.055, -0.167, -0.5, -1.5,
~4.5, The sampling interval was O.1 gsecond. The impulse was applied
at t = 0.1 second.
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similar to the pilot input in many control situations. The measurements were

made both with and without impulsive noice added to the test filter output
(to simulate pilot remnant). A sample length T of 48 seconds was used in all
measurements. The integral-square error (ISE) in the impu;se response
relative to the integral-squarc of the impulse response was computcd. Vaere
applicadble, the relative ISE in the response to an impulse filtered by

1/(s + 5.0) was also computed. It should be noted that when an impulse is

usecd as the input for measurcment purposcs, the minic coefficients obtained

-

snould be the cxpected values of the mimic coeflficlentc, ﬁj’ and the measured
. . . . 2
ISE should be the expected valuc of the residuwal variance, g

The poles and zeroes of the digital test filters werc located as shown
in Pig. T7.3. Also showmn in the fipgure ares the locations of the noiec of the
mimic filters. TFour of the test filter poles were located midway o.a a
logarithmic scale between the two adjacent mimic filter poles. For one-pole
test filters, at least, the crror should ve greater when thne test filter
pole is midway between the adjacent analysis filtcr poles thar wren it is
closer to one of the poles than to the other. The test filter nole at
s = -0.5 coincides with one of the mimic filter poles and, therefore. the
one-pole test filter with this pole should be mimiclied with no crror. Two
of the one-pole test filter poles were located outcide the range sponned
Dy the mimic poles. IWe would expect the crror to be greatest for these two
test filters. The transfer functions of the two-pole and the two-nole and
one-zero test fllters are simlilar to those of human pilots in many control
situvations.

1. lMeasurement Digital Filters with Impulse Inputs.

a&. Measurement Conditions.

(1) Test Filters: variety of digltal filters, one pole,
two pole, two pole plus zero as shown in FMig. 7 3.

(2) Mimic Filter Poles: s = -.055, -.167, ~-.5, -1.5, -4.5,
(3) 1Input for measurement of coefficients: an impulsec.

Input for mcasurement of error: an impulce.
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(5) Sample lergth: L8 seconds.
(6) Sampling interval: 0.1 second.
b. Results.

In Table 7.1 are the minic coclTlicicnts and tihc relative ISE in approxi-
mating the impulse responses of the one-pole test filters. The errors arce
less than one percent except for the filter whose pole 1s at 5 = -7.0, winlcna
is outside the range spanned by the mimic poles. The large crror in approx.-
mating this filter is causced, in part, by digital approximation crrors. The
digital sampling interval is only slightly less than the time constent of
the filter. The crror for the test filter with polc at s = -.5 ig very
small. The difference between the mcasurcd error and the expected crror of
zero is probably due to round off and truncatlon errors incurred in the
course of computation. Note that as the pole of the test filter ircrcases the
higher order mimic coefficlents 1incrcase and the low order mimlc coclficients
decrease.

In Table 7.2 are the reclative TSE for the two-pole test filters, and
the %two poles, one Zero test Tilters. For both of these types of rilters
the error is almost always less hon one percent and 1s never greater than
one and one-half percent. Thus, witn the exception of the onec-pole filter
with s = -7.0, all of the filters tested can be measured with less than one
and one-half percent error with a single set of mimlce filters. This result
is obtained for filiters whose poles and zeroes span a 200 to 1 range

2. Measurement of Digital Filters Having Time Delay with Impulsc and

Random Inputs.

a. Measurement Conditions.

(1) Test Filters: 1) =015 /(540.3)
2) e 0 1% /(s+2.5)
3) ¢ 018 /(540.3) (5+2.5)
L) e ©:1%(5+.833)/(s+0.3) (s+2.5)
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TABLE 7.2 - ANALYSIS OF TWO-POLE DIGITAL FILTERS.

MIMIC FILTER POLES SAME AS IN TABLE 7.1,

RELATIVE INTEGRAL-SQUARE

(s + 0.3)(8 + 2.5)

| FILTER ERROR IMPULSE RESPONSE
1 1.37%
(s + .035)(s + 7.0)
! 0.26 %
(s + 0.1)(s + 0.5)
1 0.15 %
(s + 0.1)(s + .833)
1 0.22 %
(s + 0.1)(s + 2.5)
L 0.62 %
(s + 0.3)(s + .833)
. 0.73 %
(s + 0.3)(s + 2.5)
! 1.21 %
(s + 0.5)(s + 0.5)
1 0.05 %
(s + 0.5)(s + 2.5)
! 0.05 %
(s + .833)(s + .833)
(s + .035) 0.16 %
(s + 0.3)(s + 2.5)
(s + 0.1) 0.16 %
(s + 0.3)(s + 2.5)
(s + 0.5) 0.14 %
(s + 0.3)(s + 2.5)
(8 + 0.833) 0.11 %

u7



148

(2) Mimic Filter Poles:

same as before,.

(3) Inputs for measurement of coefficients:

1)
2)
3)
4)

5)

Impulse

Unfiltered Impulsive Noise

#il<ered Impulsive Noise

Unfiltered Noise Input with Unfiltered
Noise added to Test Filter Outputs to
Simulate Pilot Remnant

Flltecred Noise Input with Unfiltered
Noise for Remnant. The input was
filtered by 1/(s + 5.0).

(4) Inputs for measurcment of error: an impulse and an im-
pulse filtered by 1/(s + 5.0).

(5) Sample length: 48

(6) Sampling interval:

seconds.

0.1 second for inputs (1), (2), and

(3); 0.05 second for inputs (4) and (5).

b. Comparison of Results Obtained with Different Inputs.

Mimic coefficlents were computed for each of the four test filters

when excited by each of the input 515

nals listed above., For each set oS5

mimic coefficients the relative ISE in approximating the response of the
test filters to an impulse or to a filtered impulse was computed., Thesc

errors are in Table 7.3. The ratio o
output power (vefore addition of nois

£ pemnant nolse power to test filter
e) is indicated in the table for those

measurements in which remnant noise was added. All errors shown in Table
7.3 are for the case 1in which the 0.1 second delay of the test filter is

compensated for exactly by the mimic.

As would be expected, the errors obtained with impulse inputs (Table
7.3, Column I) and unfiltered noise inputs without remnant (Column II) are
nearly equal, The mimic coefficlents for these two inputs were also nearly
equal. Thils close match in results is expected since the unfiltered noise



49

(aueuusa oy) (ruwaax %01) Q (G*2+6) (€ 0+S)
431 4 61 o ge’ 9% Lle” A o 1r° SRS (4)
(zuruuLg $GE) (rwaa %22) Am.m+wVAm.o+mv
% OT" % ot % 08" % #1° % o1’ % LO° T (€)
(aueuuraa gcz) (rwea 26 ) (G-2+5)
%92 | %o g LT % 60’ % ce % % T (€)
(3ueuuaa gle) (~waax ¢41) (€ 0+8)
% 0f" o €€ 5 €1° % o1 % 60° % g0° T (1)
Houyd HOUUH
S04 ST pe{en3tiicd HOHUd HSNOJ ST HOHUH HOHYH
ASINANIT | TSNO ST TSNOJdSHH ISTAdWT ASNOdSHY ASNOd SHH
[(CRICHuRY FSTINANT ASTININWT AL TIL HSINdHT ISTNINWT
JNINI ISION LAdNI JSION LNdNTI JSION LNINT FSION INANT
ATHALITS AIUHILTIAND A ILIIA HALTIIANN ASTNdNI WILTII LSEL
IA A AT III IT I

INOHIIM ANV HIIM SLNJINI HSION qHydLTIId ANV ISTOH QIYILTIINA

INdINO ¥ALIIL OL qIady ISION

fIoINIWT HIIM SINTWRMASYIA HOJ SHOYHT TUVNDS-TVIDIINI JATLVTM Jd0 NOSTHVIWCD

SUTLITI TYOTdAL ¥NOJ 0 SISKTIVNY - €°L TIEVL




(4

50

input is composed of a series of statistically indencndent impulses having
approximately normal amplitude distridbution.

The small differences between tine impulse and the wafiltercd roise
measurerents resulis are probably caused by end effects. In the impulse
measurements the response of test filter and mimic filters died out to zero
during the 48 second period used to compute the minmlc coefficients. In the
noise measurements input excitation was applied for the entirec 48 second
reriod and the transients did not die out.

In Column III of Table 7.3 are the errors in the filtercd impulse re-
Sponse obtained when the mimic coefficients were measured with a filtered
noise input {without remnant). The errors with all four test filters are
considerably less than one percent and not of great significance. The errors
are, however, somewhat different {rom the impulse response errors cf Column
1I which were obtained by using unfiltercd noise to measure the mimic coeffi-~
cients. The greatest change in crror occurred with the two filters that had
greatest bandwidth, Filters (2) and (4). This rcsult is expected since the
response of tiacse two filters to an impulse filtered by 1/(s + 5.0) was con-
siderably different from the response to an unfiltered impulse. The high
freguency content was reduced greatly and the encrgy in the filtered impulse
response was conslderably less than the energy in the impulse response.

The integral-square errors in impulse response obtained when the mimic
coefficients are measured with unfiltered noise input and with remnant noise
added to the filter output are in Column IV of Table 7.3. The errors arc all
less than one percent. With one exception they are greater than the errors
in Column I obtained with coefficients mcasured with impulse input. This
result 1s to be expected since the errors with Impulse inputs are the mirnimum
that can be achileved.

For Filter (2) a smaller error was obtained with unfiltered nolse input
plus remnant than with impulse input. This filter had a bandwidth of 2.5
radians per second. The impulse measurcments werc made with a digital samp-
ling interval of 0.1 second; the noise measurements with a sampling Interval



of 0.05 second. The decrcaze in sampling interval is probably responsible
for the somewnat smaller crror. Wien the sampling interval is .05 second,
the digital test filter approximates much more closely the filter 1/(s -+ 2.5)
than when the sampling interval is 0.1 second. For the ether test filters,
which have narrower bandwidth, the change in sanbling interval does rot
result In as important a change in the test filter.

The resulvs with filtered rancom inputs plus remnant in Columns V and
Vi are of considerable interest becausc this tect situation corrccoonds
most closely to that usually encountercd in measurement of pilot dynamics.
For all four {ilters, the impulse rcsponse errors in Column V are greater
than the impulse response errors in Column IV obtained with unfiltercd noise.
There are two rcasons for this incrcase: (1) The remnant with filtered noise
was conslderably greater than that with unfiltered noisc; and (2) the use of
filtered noise input results in attenuation of the high {recuency portion of
the test filter output used to measure the minilec coeflficicnts. However, the
high frequency portlon of the impulse response is not atitenuated. t 15 prob-
ably the high frequency portion oif the test filter Impulse resporncce that is
not being mimicked as accurately and which contributes to the inereasc in
error. Lxcept for Fllter (h), the errors arc considerably less than one per-
cent. For Filter (4), the error is about two percent. llowever, note that
the remnant was 40 percent for thic measurenment.

In Table 7.4 are the mimic coefficients for Filter (4) obtained with
each of the input signals. The first four coefficicents are of imnortance.
The fifth coefficient 1s small. The coefficients obiained with the first
three input signals are all very nearly the same. The deviations Zrom the
coefficients obtained with impulse inputs are in the third decimal placec.
then remnant l1s added, the deviations became larger. For the filtered ran-
dom irput plus remnant rather large differences in coefficients are observed.
However, the remnant power was 40 percent of the test filter output power.

¢. Effects of Time Delay.

The four filters used in this experiment had a time delay of 0.1 second.
Thls delay must be compensated in the measurement of filter characteristics.
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The results gilven In Table 7.3 arc for the case in which the delay 15 com-

pensated exactly. In Table 7.5 are relative integral-square errorc Ior

dilfferent amounts of delay compensation.

The experimental conditions in Table 7.5 1nclude unfiltered and filtie.cd
randonm inputs with remnant added. Thc crror has been computed with Impulse
inputs and with filtcred Impulse inputs. The delay compensation Is in in-
crements of 0.05 second. If a digitel sampling intervel of 0.1 second wers
used, one may not be able to rcduce the crror in delay compensation to less
than 0.05 second. In Table 7.5 deviation in delay compensation from the
perfect compensation of 0.1 sccond is shown. This deviation is ecuzl to the
delay in the mimlc minus the delay in tnc test filter.

If the delay deviation is negative, the mimic has a shorter delay than
the test filter and the minic responds before the test filter. Initially,
the mimlc attenmpts to suppress 1ts responsc because therc Is rno output from
the filter. However, when tne test filter begins to respond, thie mimic must

attempt to match it. If the delay deviation is positive, the nimic lias more

s

delay than the tecst filter and the mimic responds after the test filte The
mimic cannot match the initial part of the test filter responce because it
has not yet recceived 1ts input. This initial part of the test filter recponse

carnot be cancelled by the mimic and rcepresents an irreducible ervor.

In Fig. 7.4 photographs of the resnonse of Filter (4) to an impulse in-
put are chown. Also shown in the [igure are the errors in responcce that
result with different amounts of delay compensation. The mimic coellicicnts
used to obtain these response errors were those computed with filtercd :andom
inputs vlusc rcmnant and are the coelficicnts that gave the relative error

scores showm for Filter (4) in Table 7.5.

As can be seen from Filg. 7.4, the filtercd impulse response c¢f the test
fiiter rises smoothly from zero and the inltial values of the reszoase arce of
relatively small magnitude. Henece, the integral-squarc errors are rot highly
sensitive to the amount of delay compencatlon. In fact, in some cases, smaller
crrors arc observed with delay compecnsation somewhat different from perflect
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o

delay compensation. The Impulsc response of the test fllter rises abruptly
and the initial values of the recsponses are large. Hence, the integral-cquare
rror is highly scnsitive to delay compensation. Least error is cobtained

with perfect delay compensation.

[¢%

We see from Table 7.5 that when unfiltered noise is uged as the input,
the smallest crror 1s always obtained with perfect delay compensatieon. I

b

the test filter has a single pole or il the number of poles cxceeds the
number of zerocs by one, the impulse response ol the test filter will have
an initial discontinuity. We can approximaie the {ilter impulse response

by a simple decaying exponential. Call the time constant of the cxponcntlal
the "effecctive time constant' of the filter. The relative ISE is, to a Cirst
appreximation, equal to the magnitude of the ratio I&Q'/Teff, where Aa is
the delay deviation and Torr is the cflective time constant of the filter.

Test Fllters (2) and (&) have small effective time constantc. The ratio
IAa[/'refr is large for aa equal to + .05 sccond and the relative errors are
large. Test filter (1) has a large effective time constant and [Aocj/'reff is
small for Aa equal to + .05 sccond. The relative errors in Zmpulse response
are small.

If the number of test filter poles exceceds the number of zeroes by more
than one, the impulsc responsc will bezin at zero and rise smootinly. The
ISE will not increase greatly with the delay deviotion Aa provided Aw times
the initial slope of the impulsc response is small. I the input ic a [ilt-
ered iImpulse, the initial part of the response will rise smootnly from zero
ever waen the test filter has only one more pole than zero. Integral-cquare
crrors for filtered impulse inputs will also tend to remain small as Ad in-
creases. The error scores in Table 7.5 follow this pattemn.

Tne magnitude of the ISE caused by delay can be reduced by decrcasing
The sampling interval and thereby decreasing the size of the smallest incre-
ments of delay compensation. Since it is always possible to encounter a test
filter whose delay lies halfway betwecen the delay compensation increments
avallable to the computer, the maximum delay deviation is one-half the samp-

ling interval.
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However, if mimlc coefficients must be measured with filtered random in-
puts 1n the prescnce of remnant, it seecms unavoidable that wiin cerctain types
of test filters errors will be made 1n measuring the declay of the system.

Nevertheless, the computed delay compensation will yield the least ISE apprcx-
imation to the response of the system or human opcrator that 1is belrg measured.

3. Analog Test Iilter with Hoise Innuc.

a-

a. Conditions of Ixpcrimcent.

=

(1) Test Filter: Analog 1/(s + 0.5).
(2) Mimic Filter Poles: Same ag belorc.

(3) Input for lMcasurcnint of Coefiicients: VWnite Nolse paiicd
through filter with transfer function 1/(s + 1.5).

(4) Sample length: 150 scconds.

(5) Sampling interval: 0.1 sccond.

b. Results.

The mimic coefflcients obtained by analyzing this filter arc in Table
7.56. Also shown are coeff{ilcients obtained by analyzing a digital filiter
having the same pole. The input for the measurenent of the digital {ilter
was unfiltered digital impulsive noise.

The first three coefficients for the analog ard gigiltal filtcrs arc very
nearly the same. Coefficlents b& and b5 are not in good agrecement. IHowever,
these coefficients are small and do not contribute much to the mimic responsc.

In Fig. 7.5 is a Bode plot of the transfer function of the mimic of tnhlis
analog filter. It agrees very closely with the true Bode plot of a [ilter
with transfer function 1/(s + 0.5).

Thus, as we would expect, the ~ecasurenent method, when applied to mcasure-
ment of analog filters, yields results that arc essentially the samec as thosc
ovtained with digital test filters. The differences, small as they arc, arc
probably due to the fact that the digital filter only approximates the analog

filter.
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Figure 7.5.- Bode plot of analog filter 1/(s + 0.5) obtained using mimicking
technique.

TABLE 7.6 - COEFFICIENTS FOR THE SAME ANALOG AND DIGITAL FILTER

TEST FILTER b1 b2 b3 b M b 5

DIGITAL 1/(s + .5) | .5962 .6992 4029 .0019 .0029
ANALOG 1/(s + .5) | .5970 .7032 4352 .0354 .0226
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C. MEASUREMENT OF TIME-INVARIANT AND TIME-VARIANT HUMAN OPLERATOR DYNALICS.

The analysis programs were used to determine quasi-lincar {ransfer
functions or describing functions for human operator treacking response
characteristics in a simple manual control system (deseribed in refl. 9)

The input signal to the control system was esscntially white gaussian ncise
filtered by 1/(s + 1.5). The system dynamics was a simple amplifier with

unlty gain. The input signal had fairly large high frequency content and

was moderately difficult to track. Measurcmenis of time-variations in

human operator transfer function werc made by analyzing five sccond segments
of input and operator response data. The mimic filters used in these measurc-
ments had poles at s = -1.0, -1.73, -3.0, -5.19, and -9.0. The rcsidual

error variance for the entire 150 second run was computed to be about eight
bercent of the operator output power.

The mimic filter pole locations were sclected 50 as to yield ocmall obj
(standard deviation of the mimic coefficicnts) and still provide a good
approximation to a wide range of human opcrator characteristics. From meas-
urements of the elosed-loop transfcr function made with the minlc “ilter set
uced to analyze the digital test Cilter discussed in Secction VII B, it was
cbserved that the amplitude ratio was appro:ximately 0 db for Irequencies be-
1ow 1 radian per sccond and fell off rapidly above 4 radians per sccond.
“hus the poles of this transfer function were likely to be in the region be-
tween 1 radlan per second and 4 radians per second and perhaps higher. To
make the bandwldth of the first filter large, thereby increasing M (or
2wjuT), the number of degrees of frecdonm in Egs. (4.6) and (5.86), the polc
of the first filter was placed at s = -1.0. This 1s roughly the {requency
of the first significant change i amplitude ratio. The poles of the rcmaine
ing were spaced equally on a logarithmic scale, the ratio of the pole posi-
ticns being~/§i This ratio gave a sct of mimic filters whose poles were
likely to span the region in which the poles of the transfer functiion being
neasured were thought to be.

In Table 7.7 are the mimic coefficients for the first 10 five second
segments of the tracking run and for the entire 150 second tracldng run.
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TABLE 7.7 - MIMIC COEFFICIENTS FOR HUMAN OPERATOR TRACKING CHARACTERISTICS
FIRST TEN 5-SECOND SEGMENTS AND ENTIRE 150 SECOND TRACKING RUN

FIVE-SECOND MIMIC COEFFICIENTS
SEGMENT NUMEER
by b, by by, bg
1 1.11 1.05 1.29 .81 .49
2 1.14 1.20 1.32 1.26 .61
3 .98 .88 .82 .73 .52
4 .91 1.04 1.10 1.06 .45
5 .86 1.09 1.00 1.07 43
6 .86 .84 .90 .85 .15
7 97 1.06 1.02 .72 L6
8 .79 .48 .50 37 .17
9 A7 .55 .59 .48 .11
10 .80 .59 .69 .50 .24
Entire Tracking Run| .99 .88 .89 .65 .27
of 150 seconds
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These coefficients are for the closed-loop characteristics of the control
system. The delay compensation that gave least ISE was 0.1 second.

In Fig. 7.6 are Bode plots of the transfer function of the closed loop
for the entire run (Fig. 7.62) and for thc sccond and ninth five.sccond
segments (Fig. 7.6c and 7.6d). These transfer functlons include the time
delay of 0.1 second. In Fig. 7.6b are Bode plots ovtalned by aralyzing the
same data with a cross-spectrum computer built several years &g0 to analyze
human operator tracking data (rerf. 9). The agreement in the Bode plots
cbtained by the two metnods of computation, Figs. 7.6a and 7.6b, is closc.
The greater scatter in the spectral analysis results is caused by thc nar-
row bandwidth of the filters used in that analyzer. The Rodc plots for tine
second and ninth five second segments of tracking data, Figs. 7.6¢c and 7.64,
show considerable difference in amplitude ratio of the transfcr functions.
Csclllopgraph records of input and response signals also show that the gain
for segment 9 is much lower than segument 2, Differences between cocfficients
bl’ b2, and b3 for segments 2 and 9 were statistically significant at the
0.9 level.*

In Fig. 7.7a are plots of the pouer spectra of the input signal and
output signal. These spectra measurcnents agree clesely with measuranienis
made using the cross-spectrum computer. In Fig. 7.7b is a plot of the power
spectrum of the pillot's remnant. The remnant spectrum obtained with the
cross-spectrum computer is plotted in Fig. T.7ec. The greater scatter in the
cross-spectral measurements of remnant (rig. 7.7c) is probably a result of
the fact that the remnant spectrum was computed from Eq. (3.27) rather than
from the remnant signal €(7) as was the case for the spectrum in Flg. 7.7b.

It should be noted that these measurements of human operator dynamics
are of the closed-loop transfer function and were made using the forcing
function input to the system and the pilot's response. The mimlcking tech~
nique offers the possibillity of measuring directly pillot open-loop trancler
function by using the error and response signals. This ldnd of measurcment

# Differences were tested using the t test as discussed 1n Sectlion 1V B.
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is not vossible with the usual cross-spectral btcchnigues. For control
situations in which appreciable crror power ciists beyond the effcctive
vandwidth of the system input forcing function (such as might be observed)
when the pilot is controlling a lightly dampencd vehicle with a natural
frequency higher than the input bandwidth), the error power at these frc-
cuencies would be included in the pilot's remnant il cross-spectral rmethods
of analysis were used. If the mimicling technique were used, this component
of error would probably be acccountcd for in the pilot's transfer function.

e have not yet been able to determine 1f the pilot's transfer function
deternined from closed-loop measurcrments (using input signal) is differcnt
from that determined from open-loop measurements (using the error signal).
The mimicling technique makes possible comparison of these two types of
cransfer function. It would seem that the open-loop measurcment, since it
actually takes into account all of the signal to which the pilot responds
(not Jjust the part correlated with the input), should be a more appropriate
deseription of pilot behavior.
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VIII. CONCLUSIONS

The thcoretical and experimental results demonstrate that the measurc-
ment by mimicking technique is well suited to measurement of linecar time-
inveriant and linear time-variant dynamic systems whose output is disturbed
by noise. The technique has a number of advantages. The use of a minic
composcd of a set of physically realizable filters insures that the system
characteristics determined from the measurements will also be realizable.
As a result, control system elements can be measured in situ, that is, with
the signals normally circulating in the control loop and without alterin:
the connections of the system without encountering difficulties with reccpect
to the realizabllity of the measured characteristics (ref. 19). A sescond
advantage stems from the fact that the entire covariance matrix of Zg. (3.5)
15 used to determine mimlc coefficients, not just the diagonal terns,
Therefore, 1t 1s not necessary to reguire that the filter outputs be orth-
ogonal over the sample used in the measurement, as is the cace in power
spectral analysls method of measurement (rcf. 9). Consequently, shorter
samples of slgnals can be used than would be possible if orthogonality were
necessary. Third, few restrictions are placed on the type of rilters used
in the mimic. By choosing filters that resemble the characteristics of the
system belng measured, the variance of the measurements can be reduced or,
alternatively, the sample length can be reduced,.

Perhaps, the most important advantége of the measurementc by mimicking
technique 1s the relative simplicity of the relations for the variance of
the mimlc coefficients, Egs. '(4.1) and (4.6). Sample length requirements
can be estimated easily from these equations. Confidence limits for
measured values of the coeffliclents can be made using simple statistical
techniques.

The variance of the measurements of mimic coefficients determines the
sample length required to find the mimic coefficlents to within specificd
confidence limits. The variance of the mimic cocefficlents depends directly
upon the variance of the residual, inversely upon the bandwidth of the
residual, and inversely upcn the varlance of the part of the output of each



mimic filter output that is uncorrelated with the other f{ilter outputs.
It also depends upon the bandwidth of the uncorrelated part of the mimic
filter outputs.

By choosing mimic filters carefully, the residual variance can be
reduced, and the bandwidth of the mimiec filter outputs can be increased.
The mimic filters should be chosen so that their impulse responses resemble
the impulse response of the system being measured. If this is done an
accurate representation of the system can be cbtained with only a few filters.
Orthogonalized exponential filters having real poles are recommended for
rmeasurement of systems whose poles are also real or located close to the
real axis of the complex frequency plane. A single set of five such filters
wilth poles spaced uniformly on a logarithmic scale 1s capable of approxi-
nating the impulse'responses of a wide varicty of systems with a relative
integral-square error of about one per cent or less.

In an actual measurcment situation, the following procedure,
which was employed in making the measurements of human operator time-varying
characteristics discussed in .Section VIIC, is a reasonable one to use when
applying the measurement by mimicking technique. Estimate the approximate
location of the poles of the system being measured. Take a relatively long
sample of data and analyze it with a set of mimic filters whose poles more
than span the range of the poles of the system. A good choice 1s a set of
mimic filters whose poles are spaced uniformly on a logarithmic scale.
Using the results of the measurements, choose another set of mimic filters
that are better matched to the system characteristics in the sense that this
second filter set resembles the system as closely as possible. Choose
~4{lters whose bandwidths are as large as possible consistent with the re-
quirement for a good match. This second set of mimic filters will provide
a better approximation to system characteristics and will yield mimic coef-
ficients having smaller variance than the first set. It will also be
better suited for determining time-varying characteristics of the system
or of the human operation.

Bolt Beranek and Newman Inc.
Cambridge, Mass., July 31, 1962
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APPENDIX A

IMPLEMENTATION OF ANALYSIS TECHNIQUE

A. DIGITAL IMPLEMENTATION

To carry through an analysis of human piloi{ dynamic characteristics, a
number of different kinds of mathecmatical operatlons arc reguired. To deter-
mine a quasi-linear transfer functlon for the pilot, the input signal x(t)
must be flltered by the mimic {filters; the covariance matrix L of Eq. (3.12)
must be computed; the matrix equation (3.12) must be solved for the mimic
coefficlients; the mimic transfer function must be determined; and the trans-
fer function must be plotted vs. frequency. A similar set of operatlions 1s
required to determine the power spectrum of the remnant.

It 1s desirable to perform all these operations on a single computer o
that a completec analysis of pilot characieristics can be verforned without
resorting to hand computations and manipulations of data or intermcdiate
results. Although the filtering opcrations are easily donec on an analog
computer, most of the other functions cannot be handled easily on such 2
computer. A high spced digital computer can perform the filtration and i
well suited for all the other operations including preparation of nlots o
transfer functions.

~
-~
Pad
L

Ve have used a high speed digital computer to implement and evaluate
the analysis technigque discussed in this report. Programs to perform the re-
quired mathematical operations have been written for the Digital Equipnent
Corporation's PDP-1B computer (ref. 34). It is a high speed (10 microcccond
add time, for example), relatively low cost (approximately $150,000) machine
that has good input-output facilities. Clearly the measurement technigue
can be programmed on other digital computers. It is hoped that this appendix
will provide sufficient information for writing such programs. The oriho-
normal filtering and covarlance operations are easlly programmed for an ana-
log computer (see ref. 26 for discussion of analog implementation), but the
matrix operations are not easy to do on such a machine.
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B, TFUNCTIONAL DESCRIPTION

In Fig. A.1l is a flow diagram showing the principal operations performecd
by the digital computer analyzer programs. The operations are divided into
three groups: Group I 1s Data Acgquisition; Group II is Analysis; and Group
III is Transformation and Display.

The Data Acquisition Group performs the tasks of (1) digitalizing the
analog input and output signals, (2) compacting the digitalized signals for
efficient storage of data, and (3) producing a punched paper tape containing
the digitalized signals. This digital tape is then used as the input to the
Analysis programs. The digitalization is performed by a commercial analog-
to-digital converter.

Since two signals, input x(t) and y(t), must be converted, a relay com-
mutator is used to connect the converter alternatively to the two signals.
The Compacting program combines the two nearly simultaneous samples of input
and output into one computer word and stores the word in memory. The Tape
Preparation program punches the stored data on paper tape or writes it on
ragnetic tape instead of paper tape.

The Analysils Group of operations i1s performed in two steps. First, as
shown in Group IIa of Fig. A.l, the digital data tape is read in and fed to
the Delay Compensation program. This program advances pilot output y(t) in
time relative to the input x(t). Several output signals, ¥ (t +6), are
obtained from this program, each advanced in time a different amount. The
input x(t) is fed to the Analysis Filter program. This program simulates a
set of orthonormal analysis filters constructed using the Kautz procedure,
Eq. (6.4). The filter outputs are used by the Covariance program to compute
the covariance matrix L of Eq. (3.12) and the covarlance vector ¥ of that
equation. These covariances are used by the Matrix Solution program to find
mimic coefficients. A set of minmic coefficients are determlined for each
delay compensation. The delay compensation that provides the best approxi-
mation to pllot output 1s identified. The Covarlance program also computies
the covariances EZ? of Eq. (3.19), which are the coefficlents of the series
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representation for the autocorrelation function of the input, Rxx(t'), of
Eq. (3.18). The output signal y(t) is also fed to a set of analysis filters

and the coefficients of the series representation of the autocorrclation
function of the y(t), Ryy(t'), are determined. The variances of x(t) and

y(t) are also computed by the Covariance program.

In the second part of the Analysis Group (Group IIb in Fig. A.1l),
the residual signal €(t) and its autocorrelation function are computed.
The digital data tape 1s read again and the input x(t) is fed to the Delay
Compensation program. This program delays the input by an amount equal to
the time delay that was found in the first part of the analysis to give
the best approximation. to pilot output. This delayed input 1s fed to the
Analysls Filter program. The Simulate program weights each of the outputs
of the Analysis IFilter program by the appropriate mimic cocfficient as
determined in the first part of the analysls. The welghted outputs are
sumned to give the mimilc output z{(t), which is subtracted from the pilot
output y(t) to yield the residual €(t). The residual is fed to the
Analysis Filter program and the cocfflicients of the series represcntation
of the autocorrelation function of the rcsidual, R..(t'), are computed
frem the filter outputs by the Covariance program. The variance of the
residual is also computed by the Covariance program.

The Transformation and Display Group of programs (Group III in Fig. A.1l),

computes the transfer function of the mimic and the power-density spectra

of input, output and residual. These computations require the coefficients
of the mimic and the coefficients of the series represcentation of the input,
output and residual autocorrelation functions, and are performed by the
Fourier Transform program. The amplitude ratio and phase of the transfler
function and the power spectra are determined at as many frequencies as
cdeslred. These are spaced uniformly on a logarlthmic scale. The amplitude
ratio and power spectra are converted to a decibel scale. The Display
rogram generates a grid and then plots the amplitude ratio in db, the phase
angle in degrees, and the power spectra in db against the logarithm of
frequency. In this way Bode plots of the pllot's characteristics can be
obtained and photographed., Paper tapes contailning the numerical values.

of the displayed quantities c¢an be produced if desired.
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The first part of the Analysis Group of programs takes about 0.2
second per data point analyzed to perform 1ts entire set of operatiocns.

Thus, 1f human operator data 1is sampled at the rate of ten times p=r srecond,
the mimic coefficients and coefficients of the input and output spucira

could be computed at twice running time. The second part of the Analysis
Group requires about 0.1 second per data point. The entire Analysis Group,
therefore, wlll take ‘three times real time for a sampling rate of ten per
second. The Transform and Display Group of programs requires about 0.7
second to compute the mimlc transfer function and the three power spectra

per frequency.
cC. ORGANIZATION OF COMPUTER PROGRAIS

About 100 individual programs or subroutines arc used to Implcment
the analysis technique. These programs have been organized into a hler-
archy of Utility and Computation subroutines, Control programs anc Master
programs. The Control programs perform the functions represcnted by the
blocks of Fig. A.1. That is, the blocks labelled Analysils Filter, Covari-
ance, Simulate, etec. each designate a Control program. The Centrol programs
call Computation and Utility subroutines to do the arithmetical and logical
operations required for the function being performed. A Master program
calls the Control programs in proper sequence and designates the locatilon
of the arguments to be used by each Control program. The sequence of func-
tions indicated by the flow diagrams of Fig. A.l1 is determined by a Master
program.

Control programs are always called by the Master program and always
return to the Master program when they have completed the operations they
perform. Computation subroutines are called by Control programs and return
to the Control program. Similarly, the Utility programs return to the Con-
trol or Computation programs that called them.

A "Table of Contents" and a "Table of Arguments' are used in the pro-
gramming system. The Table of Contents 1s an 1temlzed 1list of all the pro-
grams that are in the computer and gives the beginning address of each pro-
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gram. All programs are called by referring to a memory register in the

Table of Contents and than transferring control to the instruction whose
address is the contents of that reglister. That instruction is the initial

instruction of the program desired. The Table of Arguments is a 1list of
parameters and addresses of parameters that are used by Control prograns.
For example, the Table of Arguments contains the address of the input to be
used by the Analysis Filter program at a particular stage of the analysis
and the initial address of the block of memory in which the filter outputs
should be deposited. Space 1s allotted in the Table of Arguments for each
of the Control programs that can be called by the Master programs. Computa-
tion and Utility subroutines always are given the arguments they require or
their locations by the Control program that calls them.

To perform a particular operation, such as Analysis Filter, the Master
program specifies the initial location in the Table of Arguments of the set
of arguments required by the Analysis Filter Control program. The Master
program then calls the Analysis Fllter Control program by specifying the
address in the Table of Contents of that program. The following is a portion
of the Master program that causes the digital data input to be read, the
signals to be compensated for time delay, and both input and output to be
Tiltered by the Analysis Filter program. These are the [irst few operations
performed by the Analysis Group of Fig. A.l.

input 3
law 1
delay comp

law 1

filter

law 2

fil?er
The instruction "input 3" causes the computer to go to the register in the
Table of Contents that contains the address of the first instruction of the
"input 3" program and then to execute that instruction. The "input 3"
program is the program that reads the digital data tape. Since only one
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set of arguments is used with that program, designation of arguments 1z not
necessary., "law 1" and "law 2" are computer instructions that cause the

numbers one (1) and two (2) to be deposited in the accumulator. These
nuwnbers desipnate the first and second sets of arguments for the progran

whose name follows the "law" instruction. The instructions "delay comp”
and “"filter"” refer to the locations in the Table of Contents that contain
the addresses of the first instructions of the Delay Compensation and of
the Analysis Filter Control programs. Since two signals are to be filtered
by the Analysils Filter program, two different sets of arguments must be
designated. Note that "law 1" precedes the first filter instruction and
"law 2" precedes the second.

Master programs are short and simple. They are casy to write or change
in the event some modification in the analysis technique is requircd. The
Table of Contents and Table of Arguments provide considerable [lexibllity in
the use of programs. When new programs are added to the system, old pro-
grams are modified, or the locations of programs are changed, only changes
or additions to the appropriate initial addresses contalned in the Table of
Contents are required. Since.all programs are called through the Table of
Contents, it 1s not necessary to change any of the calling sequences of
existing programs or to recompile or reassemble existing programs. Changes
in the arguments used by a program can be made by changing entries in the
Table of Arguments or by changing the "law" instructions in the Master pro-
gram so that different sets of arguments are used.

D. PROGRAM DETAILS

1. Group I - Data Acquisition.

lercury-wetted relays under computer control are used to commutate
between the input and output analog slgnals. Maximum commutating rates of
the relays are about 200 per second, allowing a sample from the pair of
signals at a rate of 100 per second. An Epsco TB 71l Transicon (ref. 37)
is used as the analog-to-digital converter.
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The Conversion program first switches a relay, instructs the analog-
to-digital converter to take a sample, waits until the converter indicates
that it has converted the sample, and then reads the output ragister of the
converter. The relays are then switched and the converter reads the second
channel as soon as possible after the first channel of data is taken. The
computer waits until the compubter clock indicates that 1t is time to Take

another pair of samples.

While waiting, the computer compacts the palr of samples into one word.
Tre signals are also displayed on the cathode ray tube display of the com-
puter and the operator is provided with a continuous menitor of both data
channels. The computer will not start storing data into memory until it nas
been instructed to do so by the opcrator. At the conclusion of the data run,
the data 1s punched onto paper tape.

With a sampling rate of ten per second, approximately 350 seccnds of
data can be stored in memory-when the sampling rate is ten per second.
When magnetic tape storage 1ls usecd, converted data can be written on the
tape as rapidly as it 1s sampled and the size of the compuber mcmory does
not limit the length of the tracking run that could be converted.

2. Analysis Group.
a. Analysis Fllter Program.

The Analysis Filter program simulates a set of orthogonalized exponen-
tlal filters constructed according to the Kautz procedure, Eg,. (6.4).
As many filters can be contalned in the set as desired. In most of our work,
we have used four or five fllters,
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The Xautz filters have the transfer functions that can be writtcen

./251

(s + sl)

o.(s) = /2s, (s - 5 =‘\///Q;; (s - Sl) ¢1(S)
2 (s + sl)(s + 52) Sy (s + 32)

o.(s) ,‘\///EE (s - sp) a,(s) (A.1)
3 S, (s + s3

s; (s -54,)

¢l(s) =

v (s)

S, 4 (s + si}

The first filter is a simple first order lag. The second filter 1is a

cascade connection of the first filter and a fllter having a transfer

function
s, (s -s
.._g. ..—1). ([‘\.2)

sy (s + 32)

All succeeding filters can be constructed by cascading the precvious
filter and a fllter having a transfer function of the form of Eq. (A.2).

The transfer function of Egq. (A.2) can be decomposed as follows:
Sp (8- 5) (4.3)
S (s + 8, + s )

Equation (A.3) is recognized as a transmission plus a first order lag.
Taking advantage of Eq. (A.3), the set of orthonormal filters of the form
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of Eq. (A.1) can be synthesized from simple first order lags and simple
transmissions in the manner shown in Flg. A.2.

The basic bullding block of the filter set is a first order lag,
1/(s + si). The impulse response of a filter of this form 1s

s,t

g (t) = ! (A.4)

In terms of the impulse response, the output of the filter r(t) is

r(t) = f% c(t') glt-t') at!
or (A.5)

-5, (t-t")

r(t) = ft'c(t') e dt!

vhere c(t) is the input to the filter,
The diglital computer has only sample values of c(t) avallable to it.
An approximation to Eq. (A.5) is desired when these sample values are uscd.

Assume that samples of c(t) and r(t) are taken every h seconds. The valuc
of c¢(t) and r(t) at time t = nh will be designated c(tn) and r(tn).

Equation (A.5) may be written:

t -s,(t_,.-t*')
+1 1V 041
r(t .q) = {mn c(t') e n dt! (4.6)
since
to1 = by +h
then
-s,h t -s,(t_-t")
1 n 1
ltpyy) =e © [ Te(e)e 10 et (4.7)

t -s,(t_,.-t")
+ f n+1 c(t') e i n+1 dt'
t
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The first integral on the right 1s equal to r(tn). The sccond in-
tegral must be approximated from values of c¢(t) at t, and t ... We have
used a trapezoidal rule for numerical approximation of the integral.
Using this rule, we obtain

Sih

- -s,h
(s ) = () e * +1 l:c(tm_l) vo(s) e b ] (1.8)

n+1)

Thus, the value of r at tn+1 is related to the values of r and ¢ at tn
and to the value of ¢ at tn+l'

By making use of Eq. (A.8), we obtain the following equation for the
digital approximation to the first filter of Fig. A.2.

h —slh -slh
zl(tn+l) =Ci, 5 x(tn+l) + x(tn) e + zl(tn) e (A.9)

The equations for the second filter are

h -sah}
2o(to41) = Cpy 29(tp ) + 022[5 z)(th) + 2(8,) e
-32h
+ re(tn) e (A.10)

_s.h
rolty) = Cpp 3 [zl(tn) +zy(t,4) e 2 ]

-32h
+ re(tn_l) e

Succeeding filters are approximated by equations similar to Eq. (A.10).
From Eq. (A.3), i1t may be seen that

C., =0

11

Ciq = /si/'si_1 for 1 #1
012 = /231
/3
Cyp = 81 (s2 + sl) for 1 #1
i-1

and

(A.11)



79

A single exponentlal filter program based on Egs. (A.9) and (a.10)

is used repetitively to perform the several filtering operations indicated
in Fig. A.2. The first data point of the input is applied to the rilter
program, producing the first output point of filter 1. This output point

of filter 1 is now used as the input to filter 2, and so forth. The computa-
tion is performed point by point. The constants used by the program to
simulate the set of filters diagrammed in Fig. A.2. Clz’ 022, 031, ete., are
computed in advance and stored in a table. These constants are used as

required by the program.

The digital filter does not of coursec match an analog exponential
filter exactly. The difference between the output of the digltal filter
and the corresponding analog filter depends upon the input. If thc input
i1s an impulse, the initial point of the respdnse of the digital filter will
be one-half of the correct value. All other points will equal the analog
filter response.

b. Covarilance Program.

The covariance of two signals is computed by using a Simpson's Rule
approximation for the integral
e [ z,(t) z,(¢) at (A.12)
o)

The covariances are computed point by point.

The accuracy of the Simpson's Rule approximation used in the covarilance
program has been evaluated by computing covarlances of known functions. Tne
approximation is satisfactory for the kind of analysils belng performed. For
example, when the covariance program 1s used to find the integral square of
the impulse response of a simple exponential filter, the computed values
are within 0.5 per cent of the correct values when the sampling interval h
is between .02 and .5 times the fillter time constant (ref. 36). Actually,
most of this error results from the trapezoidal approximation used in the
Analysis Filter program rather than from approximations in the Covariance
program, When the Covariance program is used to find the integral square of
the exact exponential function

r(t,) = e~ -onh (A.13)

a value of 0.999862 is obtained. This differs by .0138 per cent from unity,



8o

the value of the integral square of the corresponding continuous function

(ref. 37)
r(t) = e 2t (A,14)

¢. Matrix Solution,

The set of equations, Eq.(3.9), is solved by a simple iterative tech-
nique. The first equation is solved for bl by setting all other coeffi-
cients to zero., This value of b1 I1s usecd to find b2 in the second equation
when all higher order coefficients are cgqual to zero. Initilal values of
the remaining coefficients are found by continuing this process. The initlal
valuegs for all coefficients except b1 are then substituted into the {irst
equation, and a new value for b1 is obtained. This value 1s used 1in the
second equation to find ba. The process is continued until the fifteen most
significant binary digits of all coefficients remain unchanged after two
successive lterations.

After the mimic coefficlents are computed, the program comnputes the
integral square of the residual error. Equation (3.26) is used to obtain
the resldual integral square from the covarlances 55 and E;?. When The
resldual error 1s very small, thls method of computing the residual integral
square will be lnaccurate because the computatlon involves subtraction of
large numbers whose differences are small,

3. Transformation and Display Group.
a, Fourler Transform Program.

This program flrst computes the real and imaginary parts of the Fourier
transforms of the orthonormal filter impulse responses used in the Analysis
Filter program. These transforms are the transfer functions of the filters.
The program then uses these transfer functions to find the mimic transfer
function and the power spectra of the lnput, output and residual signals.
All of these éomputations are performed for each frequency.

The transfer function of the digital low-pass fllter that forms the
basis of Fig. A.2 can be computed by taking the z-transform of Eq. (A.8).



81

The relation
Ro41(2) = z R (2) (A.15)

i1s used to relate the z-transform of r(tn+1) and r(tn) (ref. 38). The
z-transform of Eq. (A.8) can be written

(A.16)

1 -2z e 1

Q
s/\
N
N’
|

This is an exact expression for the digital Tilter. It can be con-
vaerted to frequency domain by noting that

z = ejﬂ:h (Acl7)

Making this substitution, we obtain for the transfer function of the
filter of Eq. (A.8)

+  -S,h
Rn(jw) n |1+ e-duh o 71

Gy (J0) = ——u = 3 5 (A.18)
Cn(jw) 1 . e-dun 771

where Rn(Jm) and Cn(Jw) are the Fourier transforms of the sampled vors.ons
of the signals r(t) and c(t).

The transfer functions of the mimic filters of Fig. A.2 can be obtalned
by proceeding in the same way. For example,

. -s,h
(1 + e7dul o 17y

ol

¢, (Jo) = o, ,(J0) | Cyy +Cyp (A.19)

. -5.Nn
(l _ e—Juh e 1 )

b. Display Program.

The display device is a cathode ray oscilloscope controlled by the
computer. Individual points of a matrix of 1024 by 1024 points can be dis-
played. As a part of this analyzer, the digital oscllloscope is used to
display portions of the input, output, mimic, or remnant signals as a
function of time. It i1s also used to display the Bode plots cf the systen
or pilots being analyzed and plots of the power spectra of the signals in
the system. Coordinate grids are also displayed for these plots.
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